24小时咨询热线
400-963-0911
400-963-0911
行业动态
铅酸蓄电池在线监测增强供电系统可用性
随着电力电子技术的发展,电源(通信电源、UPS)的可靠性和安全性已经大大提高,但作为供电系统中最后一道屏障的备用储能单元(铅酸蓄电池),由于其特性(化学反应)可靠性一直没有多大提升,因此科学有效的维护是保障蓄电池系统稳定运行的关键。
目前对于蓄电池的维护工作普遍存在维护工作不到位;流程复杂、针对性差;维护手段匮乏等问题。蓄电池系统已经成为电源系统中最不可靠的部分。在重大的电源事故中,由于电源自身故障引发的事故占10%、开关切换故障引发事故占20%,而其余70%的事故都是与蓄电池故障相关的(见图1)。有效地监控和科学地维护对于提高蓄电池组稳定性至关重要。发现和解决蓄电池系统中的隐患、提高蓄电池组的安全性是目前蓄电池维护工作的重点。也是提高数据中心供电系统可用性的有效手段之一。
1阀控铅酸蓄电池维护测试方法
(1)传统的蓄电池维护方法
国际电工学会铅酸蓄电池检测和维护规范IEEE1188-1996中对于蓄电池维护规定,对于铅酸蓄电池的维护应做到以下4点:
①实时、准确的单体蓄电池电压、电池组电流和环境温度的监控;
②每月1~2次的单体蓄电池内阻测试并跟踪蓄电池内阻变化趋势;
③每年2次的核对性放电;
④对现场使用时间超过2年的蓄电池,应做到每3个月进行一次核对性放电。
该标准在提高了蓄电池系统的稳定可靠性的同时,也大大提高了对于蓄电池日常维护的要求,很难在我们的日常维护中得到充分的执行。结合我们自身的实际情况,大部分运行维护工作采用了相对简化的维护流程:
①现网电池浮充电压、浮充电流的日常巡检(每月1次);
②枢纽机房蓄电池组核对性放电试验,放出容量的30%~40%(每年1次);
③基站电池全容量放电试验(每年1次);
④发电机启动电池(半年1次)。
简化了的维护流程在降低了蓄电池维护工作量,也提高了蓄电池组的安全隐患。即便是按照简化后的流程执行,蓄电池的日常巡检和定期放电仍需要大量的人力、物力才能完成。一年一次的全容量放电的测试密度仍然不能做到及时发现电池性能的劣化状况;进一步加大放电试验密度将使蓄电池维护所牵扯的人力、物力投入过大,缺乏可操作性;对于现网的数量庞大的蓄电池,缺乏系统性的运行性能统计、趋势分析、预警和质量管理的支撑平台,维护管理手段落后。维护工作缺乏主动性、预防性[3]。
(2)蓄电池运行参数监控
蓄电池运行参数包括蓄电池的单体电压、电池组电压、电流和环境温度等参数。目前,对于这些参数的测量主要依靠人工定期巡检和在线式电压检测仪来完成。电压、电流和环境温度是蓄电池的运行参数指标,也是蓄电池稳定运行的最基本的保障。恶劣的运行环境将大大缩短蓄电池的使用寿命,加大蓄电池的安全隐患。环境温度过高,会加速蓄电池失水,造成蓄电池失效加速。在35℃时运行蓄电池的劣化将加速一倍;在55℃时,对于蓄电池浮充一个月所造成的劣化相当于在25℃时浮充一年的等级。同样,过高的充电电压也将大大加速蓄电池的劣化速度。当充电电压或环境温度过低时,蓄电池的容量饱和度很难达到100%,也直接体现为蓄电池放电容量不足。过放电对于蓄电池的损害是非常大的。对于串联使用的蓄电池组,由于蓄电池个体之间的差异,放电过程中不同蓄电池达到终止电压的时间差异很大。电池组中的某些劣化蓄电池达到放电终止电压的时间往往大大提前于其他蓄电池。以电池组电压为单位计算放电终止电压,易造成蓄电池组中部分劣化蓄电池过放电甚至是深度过放电,加速蓄电池组中故障蓄电池的出现。放电过程中,当电池组中出现达到终止电压的单体蓄电池时应停止放电,而不是以电池组电压为参考标准。
但是,仅仅对于蓄电池的电压、电流和环境温度进行监测还无法达到有效维护蓄电池的目的。蓄电池运行环境参数监测的意义更多体现在对于蓄电池运行环境的合理性检测,而不是蓄电池故障的排查。性能很差的蓄电池在浮充状态时,端电压的变化并不明显,甚至有“浮充电压正常但放电时出现严重故障”的情况[1]。而等到蓄电池放电时发现异常,往往为时已晚。
(3)蓄电池阻抗/电导在线监测
蓄电池的阻抗/电导测试技术是目前国际公认的蓄电池故障快速检测方法,也是蓄电池在线监测管理的发展方向。该技术在民用中已经得到了较好的普及,对于手机电池和汽车电瓶的故障快速检测都是基于蓄电池的阻抗/电导进行判断的。
在工业电源蓄电池检测领域中,除国际电工学会IEEE1188将蓄电池阻抗测试列为日常检测内容外,美国的TIA-92(数据中心通用基础设施建设规范2005年版)和我国的GB50174-2008(电子信息系统机房设计规范)也将蓄电池阻抗在线监测列为数据中心蓄电池的重要监测指标。
目前采用的电池内阻测试设备主要分为在线式与离线式两种。在线式测试系统,能自动化的、持续的监测各单体蓄电池参数,实现对于蓄电池的生命周期全过程管理。离线式测试系统(如手持式仪表),偏重于电池筛选过程,可确保电池使用前的一致性。从实现手段看,分为直流放电法和交流注入法。
直流放电法(专利U.S.PatentNo:5,744,962)通过对蓄电池瞬时大电流放电,并测试蓄电池端电压跌落获得蓄电池内阻数据。如图2所示。
直流放电法有以下几个主要的缺点:需要对电池进行大电流放电;不能测量蓄电池的极化内阻即电化学内阻;与蓄电池连续放电容量相关性差。
但是,直流放电法由于采用了瞬时大电流放电的方式,对于在实际使用中需要使用电池瞬时大电流放电的场合(如发电机启动电池),这种方式还是具有一定使用意义的。
交流注入法采用向蓄电池注入一定频率的交流信号实现阻抗的测试。交流法测试原理图如图3所示,将一定幅度的交流电流信号注入到蓄电池中,同时捕捉蓄电池的电压反馈。
交流法测试的蓄电池内阻,能在很大程度上体现出蓄电池的电化学特性,其测试方式的科学性较强。同时,由于采用交流注入的方式,会对电池系统中的纹波造成一定影响。对于直流系统特别是对于纹波要求较高的场合,直接采用交流法会对电源质量造成一定的影响。
脉动直流法,是介于交流法和直流法之间的一种方式。该方法是目前国际上对于铅酸蓄电池内阻的主流测试方式。脉动直流法采用的电流激励信号为直流脉动信号,这样既克服了交流激励中的纹波问题,同时也无需使用像直流法那样的大电流进行放电。采用脉动直流对蓄电池进行放电后,通过交流监测回路对蓄电池端电压的反馈进行测量。此时,测量的是蓄电池端电压对于脉动激励信号的交流反馈。或者说,对于蓄电池端电压中负荷激励频率的反馈信号进行提取,从而获得蓄电池的交流阻抗。脉动直流法,在技术实现上相对于前两种方式难度较大。脉动直流法测试工作原理如图4所示。
关于蓄电池的阻抗和电导的区别一直以来有一定的争论。国际电工学会对于蓄电池的阻抗和电导的测试方法进行了如下的定义:将已知频率的恒定电流注入到蓄电池,通过对蓄电池端电压反馈进行测试,获得的数据为蓄电池的阻抗;将已知频率和振幅的交流电压加到蓄电池的两端,测量所产生的电流,获得的数据为蓄电池的电导。即通过施加恒流信号,测试蓄电池电压反馈的方法为阻抗测试法;通过施加恒压信号,测试蓄电池电流反馈的方法为电导测试法。经过对于目前世界市场主流的蓄电池测试设备分析和比较,以MIDTRONIC、BTECH、GRANDPOWER等为代表的主流蓄电池监控设备生产厂家均采用恒流方式进行蓄电池的阻抗测试。也就是说,市场上主流的蓄电池阻抗测试设备,不管显示的是蓄电池的阻抗或是电导,实际上都是基于国际电工学会定义的蓄电池阻抗测试方法实现的。因此,目前对于阻抗/电导的提法,主要针对于采用直流大电流放电法测量蓄电池内阻而提出的。蓄电池的阻抗/电导测试的实质是针对于蓄电池在一定频率下复频阻抗的测量,除了应体现蓄电池内阻的欧姆内阻之外,还要综合考虑蓄电池的极化内阻等复频阻抗。在很多研究方法中[3],采用图5作为电池阻抗分析的等效电路。从等效电路,能够看出对于蓄电池进行复频阻抗综合分析而不是单纯的内阻分析的必要性。
阻抗测试技术虽然被大多数人认可,但是在产品化的过程中也存在一些不足。通过对于目前市场中的蓄电池阻抗的监测设备的综合分析。我们也发现了一些问题:
①各厂家设备测量出的参数不相同。由于各厂家采用的信号频率存在差异,采用不同厂家的设备测量相同状态下的蓄电池时,显示的内阻值不相同,甚至存在较大的差异;
②阻抗数据非常抽象,需要使用者具有一定的专业知识才能进行判断。很少有厂家能够提供严谨、完整的判断标准;
③部分厂家的测试结果与蓄电池实际容量劣化状态的相关性差。由于缺乏有效的界定标准,很难判断某些设备阻抗数据的真实性。
针对以上问题,将在线阻抗测试与蓄电池运行数据结合在一起就可以有效地实现供电系统中备用储能单元的故障预测,从而实现提高供电系统可用性。
①将线阻抗测试与蓄电池运行数据结合作为故障蓄电池的快速检测方法,有效的测试设备应该能够准确检知蓄电池组中的严重劣化蓄电池;
②当蓄电池处于早期劣化状态时,其阻抗的变化率将大大提高。通过连续、有效地监控能够发现蓄电池组中的早期劣化蓄电池;
③蓄电池的阻抗和容量的关系是离散相关的。有效的阻抗测试设备提供的阻抗数据,对于早期劣化蓄电池识别的准确性应该能达到80%以上;
对于严重劣化蓄电池或故障蓄电池应达到95%以上;
④线阻抗测试与蓄电池运行数据结合能提出一套完整的蓄电池劣化判断标准,而不是简单提供阻抗数值。
2蓄电池在线阻抗测试技术的价值
电池单体阻抗/电压在线测试系统的经济性,是除安全性之外运维工作的第二项主要要求。通过有效的蓄电池阻抗监测的引入,能够大大降低蓄电池维护的工作量与成本,也是提高供电系统可用性的有效手段之一。
(1)电池单体内阻监测对运维成本的节省在部分基站的测试中,初步测算,对蓄电池组采用在线内阻/电压检测系统后,可减少维护人工、物料成本60%[4]。
浙江移动的研究[3]表明,电池电导在线监测系统,能够帮助维护人员快速发现故障电池,全面、及时掌控电池组的实际运行状况,从而彻底改变传统的电池维护测试模式,有效提高维护管理效率60%以上。
(2)电池单体内阻监测对电池更换的成本节省在传统的电池运维方法中,定期按规范对电池组进行放电以核对容量。当放电容量小于设计容量的80%时候,通常采取电池组整组更换的方法。而电池组放电容量下降主要的罪魁祸首是少数的弱化、落后电池,而整组电池的报废与更换,无疑浪费了“好”电池,增加了用户的成本投入,导致全社会的浪费,也与当前节能减排工作背道而驰。有运营商对电池电导检测[3],可实现相对准确地掌控电池组中每个单体的容量范围,避免电池的盲目报废,预计可使电池报废数量降低30%以上,节能减排效益明显。
(3)电池单体内阻监测系统的投资回报ROI
管理者通常关注的是资本回报或投资回报ROI(Returnofinvest)。
早期的电池单体内阻监测系统昂贵,今天仍有不少国外品牌价格高昂,他们通常一套电池单体内阻监控系统,其价格远比被监测的电池组贵,所以投资回报ROI通常为5~8年(按简单回本期计算)[4],其经济性是比较差的。
最新的电池单体内阻监测系统成本大幅下降,当然不同厂家的不同系统的投资回报有一定差异,但是不少性能优异的厂家,其ROI已经降到1.5~3年(按简单回本期计算),部分系统已经降低到1.5~2年回报,已完全具备大规模应用的条件。
3结束语
在运行的通讯基站和数据中心等重要场所,电池单体内阻监测已经成为供电系统安全保障的一部分,在时刻保障供电系统的稳定运行。随着新型锂电池、燃料电池的逐步发展与应用,电池单体内阻监测将应用到更加广泛的空间。